此表显示了深度图神经网络架构在CoauthorsCS引文网络的结点分类任务上的一般结果。深度越深,基线(带有残差连接的GCN)的表现越差,性能也从88.18%急剧下降至39.71%。使用NodeNorm技术的神经网络架构随着深度的增加会变得更好, 但是性能却开始下降(虽然仅是从89.53%降低到87.40%)。总体而言,64层深层架构获得的最佳结果(87.40%)还不如简单的基线(88.18%)。此外,我们注意到NodeNorm规则化可以改善浅层2层架构的性能(从88.18%增至89.53%)。上表源自论文《Effective training strategies for deep graph neural networks》
从上表可以清晰看到,我们很难区分神经网络的“优势”是从深度网络架构获得的,还是从训练此类神经网络的“技巧”所获得的。上述示例中的NodeNorm还改进了仅有两层的浅层架构,从而实现了最佳性能。因此,我们无法确定在其他条件均相同的情况下,更深层数的图神经网络是否会表现得更好。
这些结果与基于网格结构数据的传统深度学习形成了鲜明的对比。在传统深度学习中,“超深度”架构能带来性能上的突破,在当今也得到了广泛应用。
接下来,作者尝试从以下几个方面来探索文章开头所提出的问题:图神经网络的深度越深,真的优势越大吗?不过作者也表示,他目前也没有一个明确的答案,希望下面这些探讨能够对大家的思考有所启发。 1、图结构
因为网格属于特殊图,目前也有一些案例可以说明深度对这类图有益。除网格图外,研究发现深度结构对一些象征结构的几何图(如分子、点云、网格等)是有促进作用的。为什么这些图与常用于评估图神经网络的引文网络(如Cora、PubMed与CoauthorsCS)如此不同呢?其中一个差异是引文网络就像直径小的“小世界”( small world),在这个“小世界”里,任意节点都可以在短短几步跳到其他节点。因此,感受野只需具备几层卷积层即能够覆盖整个图,再增加层数也无更大助益。另一方面,在计算机视觉中,感受野成倍增长,需要更多层数来建立一个能捕捉图中物体背景的感受野。